Resting and cytokine-stimulated human small airway epithelial cells recognize and engulf apoptotic eosinophils.
نویسندگان
چکیده
Eosinophils, which are prominent cells in asthmatic inflammation, undergo apoptosis and are recognized and engulfed by phagocytic macrophages in vitro. We have examined the ability of human small airway epithelial cells (SAEC) to recognize and ingest apoptotic human eosinophils. Cultured SAEC ingested apoptotic eosinophils but not freshly isolated eosinophils or opsonized erythrocytes. The ability of SAEC to ingest apoptotic eosinophils was enhanced by interleukin-1alpha (IL-1alpha) or tumor necrosis factor alpha (TNFalpha) in a time- and concentration-dependent fashion. IL-1alpha was found to be more potent than TNFalpha and each was optimal at 10(-10) mol/L, with a significant (P <.05) effect observed at 1 hour postcytokine incubation that was maximal at 5 hours. IL-1alpha stimulation not only increased the number of SAEC engulfing apoptotic eosinophils, but also enhanced their capacity for ingestion. The amino sugars glucosamine, n-acetyl glucosamine, and galactosamine significantly inhibited uptake of apoptotic eosinophils by both resting and IL-1alpha-stimulated SAEC, in contrast to the parent sugars glucose, galactose, mannose, and fucose. Incubation of apoptotic eosinophils with the tetrapeptide RGDS, but not RGES, significantly inhibited their uptake by both resting and IL-1alpha-stimulated SAEC, as did monoclonal antibody against alphavbeta3 and CD36. Thus, SAEC recognize apoptotic eosinophils via lectin- and integrin-dependent mechanisms. These data demonstrate a novel function for human bronchial epithelial cells that might represent an important mechanism in the resolution of eosinophil-induced asthmatic inflammation.
منابع مشابه
Role of Apoptosis in Airway Epithelium
Background: Airway epithelial cells may play an important clinical role in the apoptosis of eosinophils. To study recognition pathways, two types of large bronchial airway epithelial cells were used (LAECs and A549). Methods: Both resting, and dexamethasone-stimulated epithelial cells, were used in an inhibition assay. Confocal microscopy was used to demonstrate engulfment of apoptotic eosinoph...
متن کاملThioredoxin mediates remodeling factors of human bronchial epithelial cells upon interaction with house dust mite-stimulated eosinophils.
Bronchial epithelial cells exposed to allergens typically secrete chemokines to recruit eosinophils. Persistent inflammation and repair responses result in airway remodeling and irreversible airflow limitation. House dust mite (HDM) is a common allergen causing allergic disorders. Thioredoxin (TRX) is a redox protein that scavenges reactive oxygen species (ROS). This study was to elucidate how ...
متن کاملConstitutive and cytokine-stimulated expression of eotaxin by human airway smooth muscle cells.
Airway eosinophilia is a prominent feature of asthma that is believed to be mediated in part through the expression of specific chemokines such as eotaxin, a potent eosinophil chemoattractant that is highly expressed by epithelial cells and inflammatory cells in asthmatic airways. Airway smooth muscle (ASM) has been identified as a potential source of cytokines and chemokines. The aim of the pr...
متن کاملRoles of apoptosis in airway epithelia.
The airway epithelium functions primarily as a barrier to foreign particles and as a modulator of inflammation. Apoptosis is induced in airway epithelial cells (AECs) by viral and bacterial infections, destruction of the cytoskeleton, or by exposure to toxins such as high oxygen and polycyclic hydrocarbons. Various growth factors and cytokines including TGF-beta, IFN-gamma, or the activators of...
متن کاملAnti-Fas mAb-induced apoptosis and cytolysis of airway tissue eosinophils aggravates rather than resolves established inflammation
BACKGROUND Fas receptor-mediated eosinophil apoptosis is currently forwarded as a mechanism resolving asthma-like inflammation. This view is based on observations in vitro and in airway lumen with unknown translatability to airway tissues in vivo. In fact, apoptotic eosinophils have not been detected in human diseased airway tissues whereas cytolytic eosinophils abound and constitute a major mo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Blood
دوره 94 8 شماره
صفحات -
تاریخ انتشار 1999